5,472 research outputs found

    Towards Informative Path Planning for Acoustic SLAM

    Get PDF
    Acoustic scene mapping is a challenging task as microphone arrays can often localize sound sources only in terms of their directions. Spatial diversity can be exploited constructively to infer source-sensor range when using microphone arrays installed on moving platforms, such as robots. As the absolute location of a moving robot is often unknown in practice, Acoustic Simultaneous Localization And Mapping (a-SLAM) is required in order to localize the moving robot’s positions and jointly map the sound sources. Using a novel a-SLAM approach, this paper investigates the impact of the choice of robot paths on source mapping accuracy. Simulation results demonstrate that a-SLAM performance can be improved by informatively planning robot paths

    Noise Robust Blind System Identification Algorithms Based On A Rayleigh Quotient Cost Function

    Get PDF

    A TiO study of the black-hole binary GRO J0422+32 in a very low state

    Full text link
    We present 53 simultaneous photometric (I band) and spectroscopic (6900-9500 Angstroms) observations of J0422+32, taken during December 1997. From these we determine that J0422+32 was in its lowest state yet observed, at I=20.44+/-0.08. Using relative spectrophotometry, we show that it is possible to correct very accurately for telluric absorption. Following this, we use the TiO bands at 7055 Angstroms and 7589 Angstroms for a radial velocity study and thereby obtain a semi-amplitude of 378+/-16kms-1, which yields f(M)=1.191+/-0.021M_solar and q=9.0+2.2-2.7, consistent with previous observations. We further demonstrate that this little explored method is very powerful for such systems. We also determine a new orbital ephemeris of HJD=2450274.4156+/-0.0009 + 0.2121600+/-0.0000002E. We see some evidence for an ellipsoidal modulation, from which we determine the orbital inclination of J0422+32 to be less than 45 degrees. We therefore calculate a minimum mass for the primary of 2.22M_solar, consistent with a black hole, but not necessarily the super-massive one proposed by Beekman et al (1997). We obtain an M4-5 spectral type for the secondary star and determine that the secondary contributes 38+/-2% of the flux that we observe from J0422+32 over the range 6950-8400 Angstroms. From this we calculate the distance to the system to be 1.39+/-0.15kpc.Comment: (1) Department of Physics, Keele University, Keele, Staffordshire, ST5 5BG (2) Department of Astrophysics, Nuclear Physics Laboratory, Keble Road, Oxfo rd, OX1 3RH Accepted, to appear in MNRAS 8 pages, 5 figure

    A new mass-ratio for the X-ray Binary X2127+119 in M15?

    Full text link
    The luminous low-mass X-ray binary X2127+119 in the core of the globular cluster M15 (NGC 7078), which has an orbital period of 17 hours, has long been assumed to contain a donor star evolving off the main sequence, with a mass of 0.8 solar masses (the main-sequence turn-off mass for M15). We present orbital-phase-resolved spectroscopy of X2127+119 in the H-alpha and He I 6678 spectral region, obtained with the Hubble Space Telescope. We show that these data are incompatible with the assumed masses of X2127+119's component stars. The continuum eclipse is too shallow, indicating that much of the accretion disc remains visible during eclipse, and therefore that the size of the donor star relative to the disc is much smaller in this high-inclination system than the assumed mass-ratio allows. Furthermore, the flux of X2127+119's He I 6678 emission, which has a velocity that implies an association with the stream-disc impact region, remains unchanged through eclipse, implying that material from the impact region is always visible. This should not be possible if the previously-assumed mass ratio is correct. In addition, we do not detect any spectral features from the donor star, which is unexpected for a 0.8 solar-mass sub-giant in a system with a 17-hour period.Comment: 6 pages, 4 figures, accepted by A&

    Wave transformation across a macrotidal shore platform under low to moderate energy conditions

    Get PDF
    We investigate how waves are transformed across a shore platform as this is a central question in rock coast geomorphology. We present results from deployment of three pressure transducers over four days, across a sloping, wide (~200 m) cliff-backed shore platform in a macrotidal setting, in South Wales, United Kingdom. Cross shore variations in wave heights were evident under the predominantly low to moderate (significant wave height < 1.4 m) energy conditions measured. At the outer transducer 50 m from the seaward edge of the platform (163 m from the cliff) high tide water depths were 8+ m meaning that waves crossed the shore platform without breaking. At the mid platform position water depth was 5 m. Water depth at the inner transducer (6 m from the cliff platform junction) at high tide was 1.4 m. This shallow water depth forced wave breaking, thereby limiting wave heights on the inner platform. Maximum wave height at the middle and inner transducers were 2.41 and 2.39 m respectively and significant wave height 1.35 m and 1.34 m respectively. Inner platform high tide wave heights were generally larger where energy was up to 335% greater than near the seaward edge where waves were smaller. Infragravity energy was less than 13% of the total energy spectra with energy in the swell, wind and capillary frequencies accounting for 87% of the total energy. Wave transformation is thus spatially variable and is strongly modulated by platform elevation and the tidal range. While shore platforms in microtidal environments have been shown to be highly dissipative, in this macro-tidal setting up to 90% of the offshore wave energy reached the landward cliff at high tide, so that the shore platform cliff is much more reflective

    Linear prediction based dereverberation for spherical microphone arrays

    Get PDF
    Dereverberation is an important preprocessing step in many speech systems, both for human and machine listening. In many situations, including robot audition, the sound sources of interest can be incident from any direction. In such circumstances, a spherical microphone array allows direction of arrival estimation which is free of spatial aliasing and directionindependent beam patterns can be formed. This contribution formulates the Weighted Prediction Error algorithm in the spherical harmonic domain and compares the performance to a space domain implementation. Simulation results demonstrate that performing dereverberation in the spherical harmonic domain allows many more microphones to be used without increasing the computational cost. The benefit of using many microphones is particularly apparent at low signal to noise ratios, where for the conditions tested up to 71% improvement in speech-to-reverberation modulation ratio was achieved

    THE PHYLOGENETIC RELATIONSHIPS AMONG REQUIEM AND HAMMERHEAD SHARKS: INFERRING PHYLOGENY WHEN THOUSANDS OF EQUALLY MOST PARSIMONIOUS TREES RESULT

    Full text link
    Protein variation among 37 species of carcharhiniform sharks was examined at 17 presumed loci. Evolutionary trees were inferred from these data using both cladistic character and a distance Wagner analysis. Initial cladistic character analysis resulted in more than 30 000 equally parsimonious tree arrangements. Randomization tests designed to evaluate the phylogenetic information content of the data suggest the data are highly significantly different from random in spite of the large number of parsimonious trees produced. Different starting seed trees were found to influence the kind of tree topologies discovered by the heuristic branch swapping algorithm used. The trees generated during the early phases of branch swapping on a single seed tree were found to be topologically similar to those generated throughout the course of branch swapping. Successive weighting increased the frequency and the consistency with which certain clades were found during the course of branch swapping, causing the semi-strict consensus to be more resolved. Successive weighting also appeared resilient to the bias associated with the choice of initial seed tree causing analyses seeded with different trees to converge on identical final character weights and the same semi-strict consensus tree. The summary cladistic character analysis and the distance Wagner analysis both support the monophyly of two major clades, the genus Rhizoprionodon and the genus Sphyrna. . The distance Wagner analysis also supports the monophyly of the genus Carcharhinus . However, the cladistic analysis suggests that Carcharhinus is a paraphyletic group that includes the blue shark Prionace glauca .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73088/1/j.1096-0031.1992.tb00073.x.pd
    • …
    corecore